368 research outputs found

    Intermittency and non-Gaussian fluctuations of the global energy transfer in fully developed turbulence

    Full text link
    We address the experimentally observed non-Gaussian fluctuations for the energy injected into a closed turbulent flow at fixed Reynolds number. We propose that the power fluctuations mirror the internal kinetic energy fluctuations. Using a stochastic cascade model, we construct the excess kinetic energy as the sum over the energy transfers at different levels of the cascade. We find an asymmetric distribution that strongly resembles the experimental data. The asymmetry is an explicit consequence of intermittency and the global measure is dominated by small scale events correlated over the entire system. Our calculation is consistent with the statistical analogy recently made between a confined turbulent flow and a critical system of finite size.Comment: To appear in Physical Review Letter

    The Electromagnetic Self-Energy Contribution to M_p - M_n and the Isovector Nucleon Magnetic Polarizability

    Full text link
    We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading order in QED. A technical oversight in the literature concerning the elastic contribution to Cottingham's formula is corrected and modern knowledge of the structure functions is used to precisely determine the inelastic contribution. We find \delta M_{p-n}^\gamma = 1.30(03)(47) MeV. The largest uncertainty arises from a subtraction term required in the dispersive analysis, which can be related to the isovector magnetic polarizability. With plausible model assumptions, we can combine our calculation with additional input from lattice QCD to constrain this polarizability as: \beta_{p-n} = -0.87(85) x 10^{-4} fm^3.Comment: 5 pages, version accepted for publication in PR

    Negation Detection for Robust Adverse Drug Event Extraction From Social Media Texts

    Get PDF
    Adverse Drug Event (ADE) extraction from user-generated content has gained popularity as a tool to aid researchers and pharmaceutical companies to monitor side effect of drugs in the wild. Automatic models can rapidly examine large collections of social media texts. However it is currently unknown if such models are robust in face of linguistic phenomena such as negation and speculation, which are pervasive across language varieties. We evaluate three state-of-the-art systems, showing their fragility against negation, and then we introduce two possible strategies to increase the robustness of these models: (i) a pipeline approach, using a specific component for negation detection; (ii) an augmentation of the dataset with artificially negated samples to further train the models. We show that both strategies bring significant increases in performance

    Universal Fluctuations of the Danube Water Level: a Link with Turbulence, Criticality and Company Growth

    Full text link
    A global quantity, regardless of its precise nature, will often fluctuate according to a Gaussian limit distribution. However, in highly correlated systems, other limit distributions are possible. We have previously calculated one such distribution and have argued that this function should apply specifically, and in many instances, to global quantities that define a steady state. Here we demonstrate, for the first time, the relevance of this prediction to natural phenomena. The river level fluctuations of the Danube are observed to obey our prediction, which immediately establishes a generic statistical connection between turbulence, criticality and company growth statistics.Comment: 5 pages, 1 figur

    Statistics of extremal intensities for Gaussian interfaces

    Full text link
    The extremal Fourier intensities are studied for stationary Edwards-Wilkinson-type, Gaussian, interfaces with power-law dispersion. We calculate the probability distribution of the maximal intensity and find that, generically, it does not coincide with the distribution of the integrated power spectrum (i.e. roughness of the surface), nor does it obey any of the known extreme statistics limit distributions. The Fisher-Tippett-Gumbel limit distribution is, however, recovered in three cases: (i) in the non-dispersive (white noise) limit, (ii) for high dimensions, and (iii) when only short-wavelength modes are kept. In the last two cases the limit distribution emerges in novel scenarios.Comment: 15 pages, including 7 ps figure

    Relevance of soft modes for order parameter fluctuations in the Two-Dimensional XY model

    Full text link
    We analyse the spin wave approximation for the 2D-XY model, directly in reciprocal space. In this limit the model is diagonal and the normal modes are statistically independent. Despite this simplicity non-trivial critical properties are observed and exploited. We confirm that the observed asymmetry for the probability density function for order parameter fluctuations comes from the divergence of the mode amplitudes across the Brillouin zone. We show that the asymmetry is a many body effect despite the importance played by the zone centre. The precise form of the function is dependent on the details of the Gibbs measure, giving weight to the idea that an effective Gibbs measure should exist in non-equilibrium systems, if a similar distribution is observed.Comment: 12 pages, 9 figure
    • …
    corecore